
Appendix HH

Derivation of the Distribution Laws

The distribution laws are derived by maximizing the statistical weight for a perfect gas with respect to the occupation
numbers nr. In the following, we shall find it more convenient to require that the natural log of the weight be a maximum
rather than the weight itself. Since the natural logarithm of the weight lnW increases monotonically with W, the weight
will have a maximum when the logarithm of the weight has its maximum. We thus require that the following condition be
satisfied

δ lnW = 0, (HH.1)

for small variations of the occupation numbers consistent with the equations

N =
∑

r

nr (HH.2)

and

E =
∑

r

nrεr . (HH.3)

The condition (HH.1) for changes in the occupation numbers consistent with Eqs. (HH.2) and (HH.3) may be shown to
be equivalent to the condition

δ

[
lnW − α

∞∑

r=1

nr − β

∞∑

r=1

εrnr

]
= 0, (HH.4)

for all changes in the occupation numbers. This variational condition may be written

δ lnW − α

∞∑

r=1

δnr − β

∞∑

r=1

εrδnr = 0. (HH.5)

This equation may be used to derive the distribution laws for classical and quantum statistics. Since the expression for the
weightW depends upon the particular form of statistics, we must consider each kind of statistics separately.

MAXWELL-BOLTZMANN STATISTICS

For a perfect classical gas, the statistical weight is given by Eq. (7.6). Using the explicit form of this equation with the
product notation, the natural logarithm ofW(n1, n2, . . . , nr, . . . ) may be written

lnW = lnN! +
∞∑

r=1

(nr ln gr − ln nr!). (HH.6)

For a macroscopic sample, the occupation numbers nr are very large and the natural logarithm of the factorial ln nr! may
be approximated by Sterling’s formula

ln n! = n(ln n− 1), for large n. (HH.7)
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Eq. (HH.6) then becomes

lnW = lnN! +
∞∑

r=1

(nr ln gr − nr ln nr + nr). (HH.8)

Using Eq. (HH.8), the change in lnW due to changes in the occupation numbers δnr may be written

δ lnW =
∞∑

r=1

(ln gr − ln nr)δnr. (HH.9)

Substituting the above equation into the variational condition (HH.5), we obtain the condition,
∞∑

r=1

(ln gr − ln nr − α − βεr)δnr = 0,

which can be true for all variations δnr only if the factors appearing within parentheses are equal to zero. We thus have

ln gr − ln nr − α − βεr = 0.

The above condition can be written

ln
nr
gr

= −α − βεr. (HH.10)

Taking the exponent of each side of Eq. (HH.10), we obtain finally
nr
gr

= e−α−βεr . (HH.11)

The distribution law (HH.11) may be cast into a more convenient form by expressing the constant α in terms of another
constant Z by the equation

e−α = N

Z
. (HH.12)

We then have
nr
gr

= N

Z
e−βεr . (HH.13)

As shown in the book by McGervey, which is cited in Chapter 7, the constant β is equal to kT with the constant k being
called the Boltzmann constant. We thus obtain

nr
gr

= N

Z
eεr/kT . (HH.14)

The above equation is known as theMaxwell-Boltzmann distribution law.

BOSE-EINSTEIN STATISTICS

The statistical weight for Bose-Einstein statistics is given by Eq. (7.54). Using this formula, the natural logarithm of
W(n1, n2, . . . , nr, . . . ) may be written

lnW =
∞∑

r=1

[
ln(nr + gr − 1)! − ln nr! − ln(gr − 1)!

]
. (HH.15)

Sterling’s formula (HH.7) may again be used to evaluate the first two natural logarithms, and we obtain

lnW =
∞∑

r=1

[
(nr + gr − 1) ln(nr + gr − 1) − nr ln nr − (gr − 1) − ln(gr − 1)!

]
. (HH.16)

Using Eq. (HH.16), the change in lnW due to changes in the occupation numbers δnr may be written

δ lnW =
∞∑

r=1

[
ln(nr + gr − 1) − ln nr

]
δnr. (HH.17)
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Since nr is much larger than one, the number, −1, in the first term may be omitted and the above equation becomes

δ lnW =
∞∑

r=1

[
ln(nr + gr) − ln nr

]
δnr. (HH.18)

Substituting Eq. (HH.18) into the variational condition (HH.5), we obtain
∞∑

r=1

[
ln(nr + gr) − ln nr − α − βεr

]
δnr = 0. (HH.19)

Again, setting the factor multiplying δnr equal to zero, we get

ln(nr + gr) − ln nr − α − βεr = 0. (HH.20)

The above equation can be written

ln
nr

nr + gr
= −α − βεr. (HH.21)

Taking the exponent of each side of Eq. (HH.21) and collecting together the terms depending upon nr, we obtain

nr
(
1 − e−α−βεr

) = gre−α−βεr . (HH.22)

We may again take β = kT, and this equation may be written

nr = gr
1

eαeεr/kT − 1
. (HH.23)

Equation (HH.23) is known as the Bose-Einstein distribution law.

FERMI-DIRAC STATISTICS

The statistical weight for Fermi-Dirac statistics is given by Eq. (7.55). Using this formula, the natural logarithm of
W(n1, n2, . . . , nr, . . . ) may be written

lnW =
∞∑

r=1

[
ln gr! − ln nr! − ln(gr − nr)!

]
. (HH.24)

Again using Sterling’s formula (HH.7) to evaluate the first two terms in the summation, we obtain

lnW =
∞∑

r=1

[
ln gr! − nr ln nr − (gr − nr) ln(gr − nr) + gr

]
. (HH.25)

Using Eq. (HH.25), the change in lnW due to changes in the occupation numbers δnr may be written

δ lnW =
∞∑

r=1

[
ln(gr − nr) − ln nr

]
δnr. (HH.26)

As before, we substitute Eq. (HH.26) into the variational condition (HH.5) to obtain
∞∑

r=1

[
ln(gr − nr) − ln nr − α − βεr

]
δnr = 0. (HH.27)

The factor multiplying δnr may again be set equal to zero to give the following equation

ln
nr

gr − nr
= −α − βεr. (HH.28)

Taking the exponent of each side of Eq. (HH.28) and collecting together the terms depending upon nr, we obtain

nr
(
1 + e−α−βεr

) = gre−α−βεr (HH.29)

Again setting β = kT, this equation may be written

nr = gr
1

eαeεr/kT + 1
, (HH.30)

which is known as the Fermi-Dirac distribution law.




